The Dirichlet problem for the 1-Laplacian with a general singular term and L <sup>1</sup>-data
نویسندگان
چکیده
We study the Dirichlet problem for an elliptic equation involving $1$-Laplace operator and a reaction term, namely: $$ \left\{\begin{array}{ll} \displaystyle -\Delta_1 u =h(u)f(x)&\hbox{in }\Omega\,,\\ u=0&\hbox{on }\partial\Omega\,, \end{array}\right. where $ \Omega \subset \mathbb{R}^N$ is open bounded set having Lipschitz boundary, $f\in L^1(\Omega)$ nonnegative, $h$ continuous real function that may possibly blow up at zero. investigate optimal ranges data in order to obtain existence, nonexistence (whenever expected) uniqueness of nonnegative solutions.
منابع مشابه
Singular Dirichlet Problem for Ordinary Differential Equations with Φ-laplacian
We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with φ-Laplacian (φ(u)) = f(t, u, u), u(0) = A, u(T ) = B, where φ is an increasing homeomorphism, φ( ) = , φ(0) = 0, f satisfies the Carathéodory conditions on each set [a, b] × 2 with [a, b] ⊂ (0, T ) and f is not integrable on [0, T ] for some fixed values of its phase variables. We prove the exis...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولExistence and nonexistence of solutions for a singular p-Laplacian Dirichlet problem
We study the existence of positive radially symmetric solution for the singular pLaplacian Dirichlet problem, − △p u = λ|u| p−2u − γu where λ > 0, γ > 0 and, 0 < α < 1, are parameters and Ω, the domain of the equation, is a ball in R . By using some variational methods we show that, if λ is contained in some interval, then the problem has a radially symmetric positive solution on the ball. More...
متن کاملThe Dirichlet Problem for Elliptic Equations in Divergence and Nondivergence Form with Singular Drift Term
is a Carleson measure in a Lipschitz domain Ω ⊂ R, n ≥ 1, (here δ (X) = dist (X, ∂Ω)). If the harmonic measure dωL0 ∈ A∞, then dωL1 ∈ A∞. This is an analog to Theorem 2.17 in [8] for divergence form operators. As an application of this, a new approximation argument and known results we obtain: Let L be an elliptic operator with coefficients A and drift term b; L can be in divergence or nondiver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2021
ISSN: ['0951-7715', '1361-6544']
DOI: https://doi.org/10.1088/1361-6544/abc65b